Work Sheet- 2 (22.06.2020) **Class– Ten Chapter-9 Exercise-9.1 Trigonometric Ratio Creative Multiplication Choice Questions** If  $\sec\theta + \tan\theta = \frac{1}{2}$  then  $\sec\theta - \tan\theta$ 1. = What? a)  $\frac{1}{4}$ b)  $\frac{1}{3}$ c) d) 2 **Observe the following statement**— 2. i. The value of  $2 - (1 - \cot^2 \theta)$  is cosec2θ. ii.  $\sin^2 \theta + 2 = 3 - \cos^2 \theta$ iii.  $\frac{\csc\theta}{\sin\theta} - \sec\theta\cos^2\theta\csc^2\theta = 2$ Which one of the following is correct? a) i and ii b) i c) ii d) iii 3. **Observe**i.  $\tan A + \cot A = \sec A \cdot \csc A$ ii.  $\tan^2 A = \sec^2 A - 1$ iii.  $\frac{\tan A}{\sec A + 1} - \frac{\sec A - 1}{\tan A} = 1$ Which one of the following is correct? b) ii and iii a) i and ii c) i and iii ( d) i, ii and iii For a trigonometric relation-4. i.  $sin(90 - \theta) = sin \theta$ ii.  $\csc^2\theta - \cot^2\theta = 1$ iii.  $\sin^2 \theta + \cos^2 \theta = 1$ Which one of the following is correct? a) i and ii b) ii and iii c) i and iii d) i, ii and iii  $\angle B$  is a right angle of a right-angle triangle ABC and tanA = 1. Answer to the question no. (5 - 6)according to the information: What is the value of sin2A? 5. a) 1 b) 0 d)  $\frac{1}{\sqrt{2}}$ c) What is the value of two angles? 6. a) 45°, 45° b) 30°.45°

c) 45°, 30° d) 30°, 30° In  $\triangle ABC, \angle B = 1$  right angle, AB = 2unit and AC = 3 unit then answer questions no. (7 - 8): 7. **cosecC** = What? 3 √5 b)  $\frac{\sqrt{5}}{3}$ d)  $\frac{2}{3}$ c) **cotA** = What? 8. b)  $\frac{\sqrt{5}}{2}$ d)  $\frac{2}{2}$ a) c) According to the figure answer the **questions No. (59 – 60):** C What is the value of sinB.cosC? b) <u>+</u> a) 1 c)  $\frac{\sqrt{3}}{4}$ d) 4 What is the value of  $\frac{tan^2C-1}{tan^2B+1}$ ? 10. a)  $-\frac{1}{6}$ b) c) <u>3</u> d) From which language the 11. word **'TRIGONOMETRY'** has been originated? a) Greek b) Latin c) Chinese d) English Which of the following is the opposite 12. side of right angle of a right-angled triangle? a) Hypotenuse b) Base c) Height d) Perpendicular 13.

Which of the following is the height of the right-angled triangle AOB?



is



triangle and  $\angle B = 90^{\circ}$ .

i.  $a = \sqrt{b^2 + c^2}$ 

ii. The adjacent side of  $\angle F$  is b.

iii. The adjacent side of  $\angle E$  is a.

Which one of the following is correct? a) i and ii b) i and iii

d) i, ii and iii c) ii and iii

Answer to the questions No. (25 - 27)

using the following information:

In the right-angled triangle ABC,

 $\angle C = \theta, \angle B = \phi, AB = 9 \text{ cm}, BC = 15$ 

cm and AC = 12 cm.



- What is the length of opposite side in 25. cm of angle  $\theta$ ?
  - a) 15 b) 12 d) 3
  - c) 9
- For which of the following angle the 26. length of adjacent side is 12 cm?
  - a) θ b)  $\theta + \phi$
  - c) Ø d)  $\emptyset - \theta$
- What is the length of the hypotenuse 27. in cm of angle Ø?

a) 9 b) 10 c) 12 d) 15

28.



Under which of the following condition ∠OMN and ∠PRQ are will be similar right angle?

| a) | OM | ON | b) | MO | <u>MN</u> |
|----|----|----|----|----|-----------|
|    | PR | PQ | 0) | PR | PQ        |
| c) | OM | NO | (b | MN | MO        |
|    | PR | QR | u) | PQ | RQ        |

29. For which of the following condition the ratio of the sides of  $\triangle AOB$  and  $\Delta COD$  will be constant?



30.

31.



and

~ 4 ~



| 49.                                                   | If $\sin \theta = \frac{1}{2}$ and $\sec \theta = 2$ then                                 |  |  |  |  |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|
|                                                       | $\tan\theta = What?$                                                                      |  |  |  |  |
|                                                       | a) $3\sqrt{3}$ b) $6\sqrt{2}$                                                             |  |  |  |  |
|                                                       | c) $9\sqrt{2}$ d) $\sqrt{3}$                                                              |  |  |  |  |
| 50.                                                   | If $\sin \theta = \frac{\sqrt{3}}{2}$ and $\frac{1}{\cos \theta} = 2$ then                |  |  |  |  |
|                                                       | $\tan\theta = What?$                                                                      |  |  |  |  |
|                                                       | a) $3\sqrt{3}$ b) $6\sqrt{2}$                                                             |  |  |  |  |
|                                                       | c) $9\sqrt{2}$ d) $\sqrt{3}$                                                              |  |  |  |  |
|                                                       | Creative Questions:                                                                       |  |  |  |  |
| <u>Creative Questions.</u>                            |                                                                                           |  |  |  |  |
| 1. $2\cos(A + B) = 1 = 2\sin(A - B)$ , $\cot\theta +$ |                                                                                           |  |  |  |  |
| C                                                     | $\cos\theta = m \text{ and } \cot\theta - \cos\theta = n.$                                |  |  |  |  |
|                                                       | [D.B 19]                                                                                  |  |  |  |  |
| a                                                     | ) If $\tan C = \frac{3}{4}$ then find the value of sec C.                                 |  |  |  |  |
| b                                                     | ) Determine the value of <i>cosec</i> 2 <i>A</i> .                                        |  |  |  |  |
| С                                                     | ) Prove that, $m^2 - n^2 = 4\sqrt{mn}$ .                                                  |  |  |  |  |
|                                                       |                                                                                           |  |  |  |  |
| 2. s                                                  | $ecB = x$ , $tanB = y$ and $cosecA - cotA = \frac{4}{3}$                                  |  |  |  |  |
| where A and B are acute angle.                        |                                                                                           |  |  |  |  |
|                                                       | <b>Dj.B</b> 19]                                                                           |  |  |  |  |
| a                                                     | ) If $\csc\theta = 2$ then find the value of $\theta$ .                                   |  |  |  |  |
| b                                                     | ) If $\frac{x-y}{x+y} = \frac{2-\sqrt{3}}{\sqrt{3}+2}$ then show that, $B = 60^{\circ}$ . |  |  |  |  |
| с                                                     | ) Determine the value of $(\sin A + \cos A)$                                              |  |  |  |  |
|                                                       | from the information given in the stem.                                                   |  |  |  |  |
| 3                                                     | $\angle C$ is the right angle of a triangle                                               |  |  |  |  |
|                                                       | $\Delta BC \tan B = \sqrt{3}$ [All B = 18]                                                |  |  |  |  |
|                                                       | a) Find the length of AB                                                                  |  |  |  |  |
|                                                       | b) According to the stem prove that,                                                      |  |  |  |  |
|                                                       | $\frac{\cot A + \tan B}{\cot A} = \cot A \tan B.$                                         |  |  |  |  |
|                                                       | cot $B + \tan A$<br>c) If $\angle B = m + n$ and $\angle A = m - n$                       |  |  |  |  |
|                                                       | then find the value of <i>m</i> and <i>n</i> .                                            |  |  |  |  |
|                                                       |                                                                                           |  |  |  |  |
| 4.                                                    | tanA + sinA = m and tanA - sinA =                                                         |  |  |  |  |
|                                                       | n. [C.B 16]                                                                               |  |  |  |  |
|                                                       | a) Prove that, $\tan^2 A \cdot \sin^2 A = mn$ .                                           |  |  |  |  |
|                                                       | b) Show that, $m^2 - n^2 = 4\sqrt{mn}$ .                                                  |  |  |  |  |
|                                                       | c) Prove that, $\sec A = \sqrt{mn. cosec^2 A}$ .                                          |  |  |  |  |
|                                                       | Email: mithunkumar89.nr@gmail.com                                                         |  |  |  |  |

 $\sqrt{3}$ 

~ 5 ·