Work Sheet- 2 for class- Ten Chapter- Two Sets and Function Exercise-2.1 <u>Creative Questions:</u>

- 1. L = {x: x is an integer and $x^2 < 9$ }, M = {-2, 0, 2}, N = {0, 1, 2} and S = {(x, y): x \in L, y \in L and x - y = 1} [My.B.- 20]
 - a) Add: $7.0\dot{5} + 3.2\dot{7}\dot{3}$.
 - b) Prove that, $M \cup N = (M \setminus N) \cup (N \setminus M) \cup (M \cap N)$.
 - c) Express the relation 'S' in tabular method and find its range.
- 2. Universal set $\bigcup = \{x: x \in \mathbb{N} \text{ and } x^2 < 53\}$, $A = \{x \in \mathbb{N}: x \text{ is prime number} and x < 10\}$, $B = \{4, 5\}$ and $C = \{x \in \mathbb{N}: x^2 > 7 \text{ and } x^3 < 136\}$ [Ctg.B.- 20]
 - a) Express A and C in tabular method.
 - b) Prove that, $(A \cap B) \cup (B \cup C) = (A \cup B) \cap C$.
 - c) Determine P(B' A').
- 3. (i) A = 2x 1, where x ∈ N.
 (ii) B = {x ∈ N: x² < 10} and C = {x ∈ N: 2 < x ≤ 7 and x is prime number}.
 [J.B.- 20]
 - a) If S = {x $\in \mathbb{N}$: x² > 15 and x³ < 225} then express S in tabular method.
 - b) Prove that, square root of A is an irrational number, where x = 3.
 - c) If S = {(x, y): x ∈ B, y ∈ C and y = x
 + 1}, express S in tabular method and determine domain and range.
- 4. $A = \{2, 4, 7\}, B = \{x \in \mathbb{Z} : -2 \le x \le 2\}$ and $S = \{(x, y): x \in B, y \in B \text{ and } y - 2x = 0\}$ [R.B.- 19]
 - a) Express the set $C = \{x \in \mathbb{N} : x^2 9 = 0\}$ in tabular method.
 - b) By determining the set P(A), justify that the number of elements of P(A)

is equal to 2^n , where the element of A is n.

- c) By expressing S in tabular method then determine Dom S.
- 5. $F(x) = x^4 + 3x^3 + ax^2 3x 4 + a,$ $G(p) = \frac{3p^2 - p^3 - 1}{p(p-1)}.$ [C.B.- 19]
 - a) Find the value of G(-1).
 - b) Determine the value of 'a' when F(-2) = 0.

c) Prove that,
$$G\left(\frac{1}{p}\right) = g(1-p)$$
.

6.
$$F(x) = \frac{5x^2 + 3}{5x^2 - 3}$$
, $S = \{(x, y) : x \in C, y \in D \text{ and } 2x + y < 10\}$, $C = \{1, 3, 5\}$ and $D = \{2, 4, 7\}$. [D.B.- 19]
a) Divide 0.3 by 0.22.

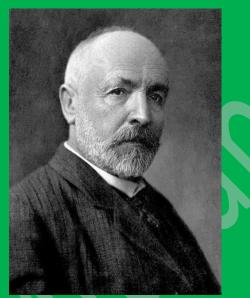
- b) Find the value of $\frac{F(\frac{1}{t^2}) 1}{F(\frac{1}{t^2}) 1}$
- c) Expressing the relation S in tabular method find the domain of it.
- i) $A = \{x \in \mathbb{Z} : 1 \le x^2 \le 7\}$ and $R = \{(x, y) : x \in A, y \in A \text{ and } y 2x 1 = 0\}.$
 - ii) $f(x) = \frac{1}{x-1}$ [J.B.- 19]
 - a) Add: $2.30\dot{4} + 2.0\dot{2}\dot{5}$.
 - b) According to the stem find the range of R from no (i).
 - c) Show that, $f(m) f(n) \neq f\left(\frac{mn}{n-m}\right)$ from (ii).

8. Universal set $\bigcup = \{1, 2, 3, 4, a, b, c, d\}$ $M = \{x \in \mathbb{N} : x^3 \ge 8 \text{ and } x^4 \le 256\}$ $N = \{y: y^2 - (c + d)y + cd = 0\}$ and $f(x) = \frac{5x - 7}{2x - 3}$. [Dj.B.- 19] a. If $A = \{11, 20\}$ and $B = \{20, a\}$ then determine $P(A \cap B)$.

- b. In the light of stem prove that, $(M \cup N)' = M' \cap N'.$
- c. If $\frac{f(x^{-1}) + 2}{f(x^{-1}) 1} = 3$ then find the value of x according to the light of stem.

0. A =
$$\{3, 4, 5, 6\}$$
, B = $\{0, 1, 2\}$ and R =
 $\{(x, y): x \in A, y \in A \text{ and } x - y = -1\}$
[All B.- 18]

- a. Show that, A and B are disjoint sets.
- b. Determine P(A) and show that the number of elements of P(A) supports 2^n , where n is the number of elements of A.
- c. Express R in tabular method and determine Dom R and Range R.
- **10.** Universal set $U = \{x : x \in \mathbb{N} \text{ and } x^2 < 50\}$, $A = \{x \in \mathbb{N} : x \text{ is prime number} and x < 8\}$, $B = \{4, 5\}$ and $C = \{x \in \mathbb{N} : x^2 > 5 \text{ and } x^3 < 130\}$ [J.B.- 17]
 - a) Express A and C in tabular method.
 - b) Prove that, $(A \cup B) \cap C = (A \cap B) \cup (B \cup C)$.
 - c) Find the value of P(B' A').
- 11. $U = \{1, 2, 3, 4, 5, 6, 7\}, A = \{x \in \mathbb{N} : x^2 > 15 \text{ and } x^3 < 225\}, B = \{x \in \mathbb{N} : 4 \le x \le 7\} \text{ and } C = A \cup B.$ [R.B.- 16]
 - a) Express set A by tabular method.
 - b) Prove in the light of the stem that (A \cap B)' = A' \cup B'.
 - c) If n is the number of elements of C, show that the number of elements of P(C) supports 2ⁿ.
- 12. A = {x : x $\in \mathbb{N}$ and $x^2 5x + 6 = 0$ }, B = {x : x $\in \mathbb{N}$ and 2 < x < 6} and C = {2, 4, 6}. [Ctg.B.-16]
 - a) Express set A by tabular method.
 - b) Prove that, $(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$.
 - c) Determine P(B). If the elements of set B are n, show that the number of elements of P(B) supports 2ⁿ.


13. $U = \{x : x \in \mathbb{Z} \text{ and } x^2 < 10\}, A = \{x : x, \text{ natural factor of } 12\}, B = \{x \in \mathbb{N} : x^2 - 3x + 2 = 0\} \text{ and } C = \{0, 1, 2, 3\}$ [D.B.-15]

- a) Express U roaster method.
- b) Verify: $(A \cup B)' = A' \cap B'$.
- c) Determine P(C) and show that the number of elements of P(C) is 2^n .

- 14. $A = \{ x : x \in \mathbb{N} \text{ and } x^2 8x + 15 = 0 \}, B = \{1, 3\}, C = \{2, 3\} \text{ and } D = \{a, b, c\}.$ [R.B.-15]
 - a) Express A in roaster method.
 - a) Express A in roaster method.
 - b) Prove that, $A \times (B \cap C) = (A \times B)$ $\cap (A \times C)$.
 - c) Determine P(D) and show that the number of elements of P(D) is 2^n .
- 15. $P = \{ x : x \in \mathbb{N} \text{ and } x^2 7x + 6 = 0 \}, Q = \{ x : x \in \mathbb{N} \text{ and } 1 \le x < 5 \} \text{ and} R = \{ 2, 4, 6 \}.$ [Ctg.B.- 15] a) Express set P in tabular method.
 - b) Prove that, $(P \setminus Q) \cup (Q \setminus P) = (P \cup Q) \setminus (P \cap Q).$
 - c) Show that, $P \times (Q \cup R) = (P \times Q) \cup (P \times R).$
- 16. $U = \{1, 2, 3, 4, 5, 6, 7\}, A = \{x : x \in \mathbb{N} \ and x^2 (a + b)x + ab = 0\}, B = \{x : x \in \mathbb{N} ; x^2 > 15 and x^3 < 225\} and C = \{x \in \mathbb{N} : 4 < x \le 7\}.$ [S.B.-15]
 - a) Express set A in tabular method.
 - b) Prove that, $(B \cup C)' = B' \cap C'$.
 - c) Find the value $A \times (B \cup C)$ and $A \times (B \cap C)$.
- 17. A = {x: $x \in \mathbb{N}$ and $x^2 5x + 6 = 0$ }, B = {1, 4} and C = {a, 4}. [Dj.B.- 15]
 - a) Determine set A in tabular method.
 - b) Determine P(B ∪ C) and show that the number of elements of P(B ∪ C) supports 2ⁿ.
 - c) Show that, $A \times (B \cap C) = (A \times B)$ $\cap (A \times C)$.
- 18. A = {x: \mathbb{N} : $x^2 5x + 6 = 0$ }, B = {3, 4} and C = {2, 4}. [J.B.- 15]
 - a) Express set A in tabular method.
 - b) Show that, $P(B \cap C) = P(B) \cap P(C)$.
 - c) Prove that, $A \times (B \cup C) = (A \times B)$ $\cup (A \times C)$.
- 19. Of 100 students 65 passed in Bangla,48 in both Bangla and English and 15 failed in both the subjects.
 - a) Express the above in Venn diagram along with brief description.

- b) Determine the number of students who passed only in Bangla or passed only in English.
- c) Determine the union of the sets of prime factors of number of students passed and failed in both the subjects
- 20. $P = \{x: x \in \mathbb{N} x \text{ is the factor of 52}\},\ Q = \{x: x \text{ is the all positive odd} number \le 15\} and R = \{x: x \text{ is whole} number and <math>x^2 < 15\}.$
 - a) Express P and Q in tabular method.
 - b) Express R in tabular method and express P and Q in Venn diagram.
 - c) Find $P \cap Q$ and $(P \cup Q) \cap R$.

Basic Information:

- German mathematician Georg
 Cantor (1845 1918) is the
 father of Modern Set Theory.
- He recognized that there may be different size of infinite set.
- He invented all the symbols of real number which are used at present.

Leonhard Euler (1707 – 1783) was a prolific mathematician whose work spanned the fields of Geometry, Calculus, Trigonometry and Algebra.

- Euler was the first to introduce the notation for a function f(x).
- He also popularized the use of the Greek letter π to denoted the ratio of a circle's circumference to its diameter.
- He is the pioneer of signs used in modern trigonometry.
- He used Σ to denote sum, and i to denote infinite numbers and used π first.