Work Sheet- 3 for Class- Ten (15.08.2020), Chapter- Nine Exercise- 9.1

Exponential and Logarithmic Function

Creative Questions:

- 1. $P = \frac{\log_k(3+k)}{\log_k x}$ and $\frac{1}{N} = \frac{x-1}{2x}$. [D.B.- 20]
 - a) Solve the inequality: 3a 2 > 2a 1.
 - b) If $6\sqrt{N} + 5\sqrt{\frac{1}{N}} = 13$ then find the value of x.
 - c) If p = 2 then show that $x = \frac{1 + \sqrt{13}}{2}$.
- 2. $A = x^2 + 2$, $x \ge 0$ and $S = \{(x, y) : x^2 + y^2 6x + 10y 47 = 0\}$. [My.B.- 20]
 - a) Resolve into factors: $4x^4 + 8x^3 x^2 2x$.
 - b) If $A = 3^{\frac{2}{3}} + 3^{-\frac{2}{3}}$ then prove that, $3x^3 + 9x 8 = 0$.
 - c) Sketch the graph of the relation S and determine from the graph whether the relation is a function.
- 3. (i) $px^2 + qx + r = 0$ and (ii) $m^2 + n^2 = 7mn$ are two quadratic equations.

[Ctg.B.- 20]

- a) Solve the inequality $4(3-2t) \ge 2(2-3t)$.
- b) From the 2^{nd} equation prove that, $\log \frac{m+n}{3} = \log \sqrt{m} + \log \sqrt{n}.$
- c) If p = 1, q = -5 and r = 4 then solve the equation no. (i) with the help of graph.
- 4. If $x^{\frac{1}{p}} = y^{\frac{1}{q}} = z^{\frac{1}{r}}$, m = 2, n = 3 and $g^2 = h^3$ then [D.B.- 19]
 - a) Find the nature of the roots of the equation $3 + 7x 5x^2 = 0$.
 - b) Prove that, $\left(\frac{g}{h}\right)^{\frac{n}{m}} + \left(\frac{h}{g}\right)^{\frac{m}{n}} = \sqrt{g} + \frac{1}{\sqrt[3]{h}}$
 - c) If xyz = 1 then prove that $\frac{1}{a^q + a^{-r} + 1} + \frac{1}{a^r + a^{-p} + 1} + \frac{1}{a^p + a^{-q} + 1} = 1$.

- 5. $A = \frac{1}{y^q + y^{-r} + 1} + \frac{1}{y^r + y^{-p} + 1} + \frac{1}{y^p + y^{-q} + 1}$ and $log_e(3 + x) = 2log_ex$. [R.B.- 19]
 - a) If $\log_{\sqrt{27}} m = 3\frac{1}{3}$ then determine the value of m.
 - b) If p + q + r = 0 then prove that, A = 1.
 - c) From 2^{nd} equation then prove that, $x = \frac{\sqrt{13} + 1}{2}$.
- 6. $\sqrt[x]{a} = \sqrt[y]{b} = \sqrt[z]{c}$ [B.B.- 17]
 - a) If a = c show that, x = z.
 - b) If $x = \frac{1}{2}$ and $y = \frac{1}{3}$ then show that, $\left(\frac{a}{b}\right)^{\frac{3}{2}} + \left(\frac{b}{a}\right)^{\frac{2}{3}} = a^{\frac{1}{2}} + b^{-\frac{1}{3}}$.
 - c) If abc = 1 then prove that, $\frac{1}{p^{-x} + p^{y} + 1} + \frac{1}{p^{-y} + p^{z} + 1} + \frac{1}{p^{-z} + p^{x} + 1} = 1$.
- 7. If $a^x = b^y = c^z$ where $a \ne b \ne c$.

 [J.B.- 15]
 - a) If $p^{p\sqrt{p}} = (p\sqrt{p})^p$ then find the value of P.
 - b) If $ab = c^2$ then prove that, $\frac{1}{x} + \frac{1}{y} = \frac{2}{z}$
 - c) If abc = 1 then prove that, $\frac{1}{x^3} + \frac{1}{y^3} + \frac{1}{z^3} = \frac{3}{xyz}$.
- 8. If $32y^{x} y^{2x} = 256 \dots (i)$, $4^{x} = y^{2} \dots (ii)$ and $F(z) = In\left(\frac{5+z}{5-z}\right) \dots (iii)$
 - a) Show the solution in number line: $8 \ge 2 2x$.
 - b) Find (x, y) using (i) and (ii).
 - c) Find the domain and range of F(z).
- 9. $4^{x} 3^{x \frac{1}{2}} = 3^{x + \frac{1}{2}} 2^{2x 1}$ is an exponential equation.
 - a) Express the equation in the form of 2^{2x} . $a = 3^x$. b where a and b are constants.
 - b) Solve the equation.
 - c) Verify the exactness of the equation and show that, $4^{x} 3^{x + \frac{1}{2}} \neq 3^{x + \frac{1}{2}} 2^{2x-1}$.