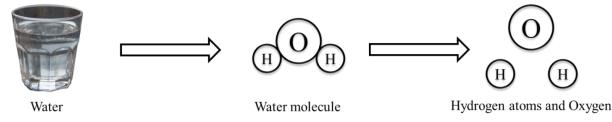

Work Sheet: 01 Scíence (Chapter-08: Chemícal Reactíon) Class: VIII

- A tiny particle of matter, which can stay independently retaining the properties of that matter is called a molecule.
- The smallest particles that make up a molecule, which have no independent existence, are called atoms.
- The molecules that break down to form one type of atom are called elementary molecules.


Bromine

Bromine molecule

Bromine atoms


Substances that are made up of only one type of molecule, the molecule that breaks down to form one type of atom, are called elemental substances.

✓ The molecules that break down to form more than one type of atom are called composite molecules.

 Substances that are made up of only one type of molecule, which can be broken down into more than one type of atom, are called composite substances.

Sanjib Kumar Pal (palsanjib15@gmail.com)

Q. Why is iron an element? Q. Why is Sodium chloride a compound?

Sanjib Kumar Pal (palsanjib15@gmail.com)

Symbol of elements: Symbol with English name

Element	Symbol	l
Hydrogen	Н	Fir 1
Oxygen	0	etter
Nitrogen	Ν	ne

Element	Symbol	
Helium	He	
Aluminium	Al	irst tw letters
Silicon	Si	S NO

Element	Symbo	l
Chlorine	Cl	I I em
Chromium	Cr	First or etter ar nphasiz letter
Magnesium	Mg	rst one ter and bhasizing letter

Symbol with Latin nam

Element	Latin Name	Symb	ol
Potassium	Kalium	K	Fir: le
Tungsten	Wolfram	W	st one etter

Element	Latin Name	Symbo	ol
Gold	Aurum	Au	First
Copper	Cuprum	Cu	st two
Iron	Ferrum	Fe	-
Sodium	Na trium	Na	letters

Element	Latin Name	Symb	ol
Silver	Argentum	Ag	Fii en
Mercury	H ydrargyrum	Hg	st Or pha
Lead	P lum b um	Pb	First One lette emphasizing
Antimony	Stibium	Sb	le 'r
Tin	Sta n num	Sn	and tter

 \blacktriangleright Short expression of the element is called **symbol**.

***** Formula of molecule of element & compound:

 \blacktriangleright In a molecule of an element, all the atoms are same.

For example, in a molecule of oxygen (O_2) , both of the atoms are oxygen.

 \blacktriangleright In a molecule of a compound, all the atoms are different.

For example, in a molecule of water (H $_2$ O), there is one oxygen atom and two hydrogen atom

Molecule of element	Formula
Hydrogen	H ₂
Oxygen	O ₂
Ozone	O ₃
Nitrogen	N_2
Chlorine	Cl ₂

Molecule of Compound	Formula
Water	H ₂ O
Carbon dioxide	CO ₂
Quick lime	CaO
Caustic soda	NaOH
Limestone	CaCO ₃

 \blacktriangleright The short expression of the molecule of an element or a compound is called formula.

Q. What type of molecule is SO ₂ and why?
Q. What type of molecule is Br_2 and why?
Radicals or Free Radicals: In chemistry, radicals are—
group of atoms
do not stay independently
Participate in compound formation like elemental atom
Suppose,
• In NH_4^+ , there are 5 atoms. So, it is a group of atoms.
 NH₄⁺ is chemically reactive. So, it does not stay independently
• Ammonium and Carbonate form Ammonium carbonate, $(NH_4)2CO_3$
Q. Why is $CO_3^{2^-}$ a radical?

Sanjib Kumar Pal (palsanjib15@gmail.com)

How to write the formula of a compound?

- The valency of the element means the number of hydrogen atom attached to that element.
- Valency of elements = Our hand

Suppose, oxygen can be attached with two hydrogen atoms as oxygen has two hands. So, the valency of oxygen is 2.

- The valency of element A is x
- The valency of element B is y
- The formula of compound with A and B is AyBx

 \blacktriangleright The valency of P is 4

The valency of Q is 2 \sim

The formula of compound with P and Q is $P_2Q_4 = P_1Q_2 = PQ_2$

✓ The valency of Ammonium (NH_4^+) is 1

✓ The valency of Sulphate (SO_3^{2-}) is 2

✓ The formula of compound with Ammonium and Sulphate is $(NH_4)_2(SO_4)_1 = (NH_4)_2SO_4$

Q. Write the formula of compounds formed with the following elements and radicals.Elements & RadicalsCompoundElements & RadicalsCompound

Elements & Radicals	Compound	Elements & Radicals	Compound
Na & CO ₃ ²⁻		Cu & SO ₄ ²⁻	
Mg & Cl		C & H	
Zn & SO ₄ ²⁻		Fe (us) & O	
NH ₄ ⁺ & PO ₄ ³⁻		Pb (us) & NO ₃ -	
Al & OH		Na & HCO ₃ -	